一、卡诺循环的构成
热力学第二定律指出,热机的热效率不可能达到100%。那么,在一定条件下,热机的热效率最大能达到多少?它又与哪些因素有关?法国工程师卡诺(S. Carnot)在深入考察了蒸汽机工作的基础上,于1824年提出了一种理想的热机工作循环—卡诺循环。
设一热机中有一定量的工质,工作在温度分别为T1和T2的两恒温热源间。卡诺循环由两个可逆的定温过程和两个可逆的绝热过程(定熵)组成(见动画4-8)。
四个过程的顺序如下:
定温膨胀过程a-b:工质在定温T1下,从高温热源吸热Q1并作膨胀功Wo。 定熵膨胀过程b-c:工质在可逆绝热条件下膨胀,温度由T1降到T2。 定温压缩过程c-d:工质在定温T1下被压缩,过程中将热量Q2传给低温热源。 定熵压缩过程d-a;工质在可逆绝热条件下被压缩,温度由T2升高至T1,过程终了时,工质的状态回复到循环开始的状态a。
三、逆卡诺循环
如果沿卡诺循环相反的方向进行,就形成卡诺制冷循环和卡诺热泵循环(见动画4-9)。
对于卡诺制冷循环,工质可逆定温从温度为T2冷库吸热,被可逆绝热压缩后,可逆定温向温度为T1环境介质放热,最后可逆绝热膨胀,进入冷库,完成循环。其制冷系数

对于卡诺热泵循环,工质可逆定温从低温热源T2,如环境介质吸热,被可逆绝热压缩后,可逆定温向高温热源T1,如建筑物室内放热,最后可逆绝热膨胀,完成循环。其供暖系数或热泵工作性能系数

应当指出,逆卡诺循环虽然实际上不能实现,但却为提高制冷机和热泵的完善程度指明了方向,仍具有重要的理论意义。
四、卡诺定理
以理想气体为工质的卡诺循环,已导出其热效率。如果是其他工质完成的卡诺循环,或是两恒温热源间工作的其他热机,其热效率又如何呢?卡诺定理指出: 在相同的高温热源和低温热源之间工作的一切可逆循环,其热效率都相等,与其工质无关。 在相同的高温热源和低温热源之间工作的一切不可逆热机,其热效率不可能大于可逆循环的热效率.

(a) |

(b) |
图 4-2 卡诺定理证明用图 |
下面用反证法对第一定理进行证明:假设在温度为T1的高温热源与温度为T2的低温热源间工作有两个任意的可逆热机R1和R2,如图4-2(a)所示,其热效率分别为 和 。假如 ,则当两个热机从高温热源吸取的热量都为Q1时,根据热效率的定义可知, , 。这时可让热机R1按正向循环工作,用输出功 中的一部分 带动热机R2逆向循环工作,如图4-2(b)所示。联合运行的结果是每一循环从低温热源吸收热量 ,对外作功 ,高温热源没有任何变化,相当于一台单一热源的第二类永动机。这显然违背了热力学第二定律,因此 是不可能的。同样可以证明, 也是不可能的。于是只有一种可能性,即 。由于上述证明没有限定工质的性质,所以结论对使用任何工质的可逆热机都适用。定理二可以同样采用反证法证明,思路与定理一的证明相同。 |